A matter of choice: the establishment of sister chromatid cohesion.
نویسنده
چکیده
Sister chromatid cohesion is the basis for the recognition of chromosomal DNA replication products for their bipolar segregation in mitosis. Fundamental to sister chromatid cohesion is the ring-shaped cohesin complex, which is loaded onto chromosomes long before the initiation of DNA replication and is thought to hold replicated sister chromatids together by topological embrace. What happens to cohesin when the replication fork approaches, and how cohesin recognizes newly synthesized sister chromatids, is poorly understood. The characterization of a number of cohesion establishment factors has begun to provide hints as to the reactions involved. Cohesin is a member of the evolutionarily conserved family of Smc subunit-based protein complexes that contribute to many aspects of chromosome biology by mediating long-range DNA interactions. I propose that the establishment of cohesion equates to the selective stabilization of those cohesin-mediated DNA interactions that link sister chromatids in the wake of replication forks.
منابع مشابه
Establishment of Sister Chromatid Cohesion
The process of sister chromatid pairing, or cohesion establishment, is coupled to DNA replication and fundamental to proper chromosome segregation and cell viability. In the past year, several articles have provided important new insights into cohesion establishment, an activity predicated on the acetyltransferase Ctf7/Eco1. Here, I review new findings that the conversion of chromatid-bound coh...
متن کاملSister chromatid cohesion establishment occurs in concert with lagging strand synthesis
Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a p...
متن کاملThe zinc finger of Eco1 enhances its acetyltransferase activity during sister chromatid cohesion
Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister...
متن کاملCtf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome
DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif ...
متن کاملReplication Factor C Complexes Play Unique Pro- and Anti-Establishment Roles in Sister Chromatid Cohesion
Recent studies have lead to a rapid expansion of sister chromatid cohesion pathways. Of particular interest is the growth in classifications of anti-establishment factors-now including those that are cohesin-associated (Rad61/WAPL and Pds5) or DNA replication fork-associated (Elg1-RFC). In this study, we show that the two classes of anti-establishment complexes are indistinguishable when challe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 10 10 شماره
صفحات -
تاریخ انتشار 2009